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Context

• Increase in Frequency, Severity of
Extreme temperature events [1].

• Nuclear safety Issues: Jeopardy
of Critical equipment, Construc-
tions, Health.

How to define the risk of extreme temperature levels excess by 2100 at
a local scale ?

Equivalent Reliability
• Separating the period of interest from the return period.
• Account for non-stationnarity, Y2023 ̸= Y2050.
• Applied similarly with or without stationarity [4] [3].

For period t1, .., t2 and annual probability p , solution zp of :

P [Max(Zt1 , Zt1+1, ..., Zt2) ≤ z] = (1− p)t2−t1+1

Statistical Model

Non-stationarity: Time depen-
dency on a covariate Xt

Y ∼ GEV (µt, σt, ξ)
µ(t) = µ0 + µ1Xt

σ(t) = exp(σ0 + σ1Xt)

ξ(t) = ξ0

Parameter Estimation

Bayesian framework [5]

A-priori knowledge

• Include only information from cli-
mate models. (historical and
scenario).

Updated using observations

• Maxima constraint using Markov
chain Monte Carlo (NUTS).

• Using past local observations.
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Predictive Distribution

One distribution [2] :
• Averaged over the

distribution of the
model parameters.

• Account for esti-
mation error and
stochastic error. 7 8 9 10 11 12
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Application
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Quantile p=0.001
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 Total probability: 0.05

For an Equivalent Reliability
level of 1000 years:
• Predictive is 52.9°C
• Median is 50.3°C with

55.5°C for 95% upper
bound.

Interpretation

53°C has an annual probability
of excess of 1

1000 over 2050-
2100.

53°C has a 5% probability of
excess over 2050-2100.

Outlook

• Application to various places and scenar-
ios.

• Prior adaptation:

– Specification: upper bound on ξ, prior
type, etc.

– Precision: Add ’expert opinion’ weight,
other information sources.

– Hierarchical model: using sources of in-
formation like IA downscaling to refine
the posterior in successive steps.

• Model specification: Prior on the upper
bound, Other parameter specification

• Theoretical exploration: Define condi-
tions necessary for a bounded predictive.

Uncertainty

• Using all draws:
median and confi-
dence intervals.

• Confidence Level is
another parameter
to choose.

• Overlap is possible:
What’s the actual
risk considered ?
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