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Equivalent Reliability

Future global warming levels « Separating the period of interest from the return period.
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Extreme temperature events [1]. * Applied similarly with or without stationarity [4] [3].
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Parameter Estimation
How to define the risk of extreme temperature levels excess by 2100 at arameter Estimatio
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Updated using observations

» Maxima constraint using Markov
chain Monte Carlo (NUTS).

« Using past local observations.
Uncertainty

+ Using all draws: —— Median quantie Predictive Distribution
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dence intervals. 10 Overla One distribution [2] :

« Confidence Level is 8 | * Averaged over the
another parameter . distribution of the
to choose. | model parameters.

» Overlap is possible: 4  Account for esti-

What's the actual _ 003 o004 _ mation error and

risk considered ? Probability stochastic error.

Application Outlook

I Time period For an Equivalent Reliability » Application to various places and scenar-
Quantile p=0.001 55°C level of 1000 years: i0s.

B Observations * Predictive is 52.9°C * Prior adaptation:

« Median is 50.3°C with

PER level p=0.001 . . . — Specification: upper bound on &, prior
for 2050-2100 >0"C 25-5;3 for  95%  upper type, etc.
ity ound.
Total probability: 0.05 — Precision: Add ‘expert opinion’ weight,
45°C Interpretation other information sources.
— Hierarchical model: using sources of In-
40°C 53°C has an annual probability formation like IA downscaling to refine
of excess of 555 over 2050- the posterior in successive steps.
2100.  Model specification: Prior on the upper
35°C bound, Other parameter specification
Scenario SSP 5-8.5 53°C has a 5% probability of |

* Theoretical exploration: Define condi-

1960 1980 2000 2020 2040 2060 2080 2100 excess over 2050-2100.

tions necessary for a bounded predictive.
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